Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Populus from high altitude has more efficient protective mechanisms under water stress than from low-altitude habitats: a study in greenhouse for cuttings.

Identifieur interne : 003519 ( Main/Exploration ); précédent : 003518; suivant : 003520

Populus from high altitude has more efficient protective mechanisms under water stress than from low-altitude habitats: a study in greenhouse for cuttings.

Auteurs : Chunying Yin [République populaire de Chine] ; Xueyong Pang ; Yanbao Lei

Source :

RBID : pubmed:19549066

Descripteurs français

English descriptors

Abstract

Cuttings of Populus przewalskii and P. cathayana, which originated from high and low altitudes in southwest China, were used to examine the effect of water stress on the morphological, physiological and biochemical traits of plants in a greenhouse for one growing season. The dry mass accumulation and allocation, gas exchanges, extent of peroxidation damage, osmotic adjustment and antioxidative defenses, and amounts of pigments were measured to characterize the differences in peroxidation damage and protective mechanisms of two poplar species that contrast in drought tolerance. Under water stress, poplars showed a series of biochemical adjustments and morphological changes as follows: a decrease in leaf relative water content, gas exchanges, plant growth and dry mass accumulation; an increase in relative allocation to roots; an increase in the osmolyte contents (e.g. total amino acids). Additionally, water deficit induced an increase in peroxidation damage [as indicated by an increase in electrolyte leakage, malondialdehyde (MDA), carbonyl (C = O ) and hydrogen peroxide (H(2) O(2) ) content], enhanced activities or contents of antioxidants (e.g. ascorbate peroxidase, guaiacol peroxidase, glutathione redutase and ascorbic acid) and reduced amounts of leaf pigments (e.g. chlorophyll and carotenoid). Furthermore, there were significant differences in the extent of morphological and biochemical changes between the two poplar species. Compared with P. cathayana, P. przewalskii responded to water stress by allocating relatively more to root dry mass, possessing a higher net photosynthesis rate, and having more efficient protective mechanisms, such as more osmolyte accumulation, stronger antioxidant activities and lower chlorophyll/carotenoid ratio. Thus, P. przewalskii suffered less damage as deduced from lower levels of electrolyte leakage, MDA, C=O and H(2) O(2) content. Therefore, P. przewalskii originating from high altitude could possess more efficient protective mechanisms than P. cathayana, which is from low-altitude habitats.

DOI: 10.1111/j.1399-3054.2009.01251.x
PubMed: 19549066


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Populus from high altitude has more efficient protective mechanisms under water stress than from low-altitude habitats: a study in greenhouse for cuttings.</title>
<author>
<name sortKey="Yin, Chunying" sort="Yin, Chunying" uniqKey="Yin C" first="Chunying" last="Yin">Chunying Yin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chengdu Institute of Biology, Chinese Academy of Sciences, PO Box 416, Chengdu 610041, PR China. yincy@cib.ac.cn</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Chengdu Institute of Biology, Chinese Academy of Sciences, PO Box 416, Chengdu 610041</wicri:regionArea>
<wicri:noRegion>Chengdu 610041</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pang, Xueyong" sort="Pang, Xueyong" uniqKey="Pang X" first="Xueyong" last="Pang">Xueyong Pang</name>
</author>
<author>
<name sortKey="Lei, Yanbao" sort="Lei, Yanbao" uniqKey="Lei Y" first="Yanbao" last="Lei">Yanbao Lei</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19549066</idno>
<idno type="pmid">19549066</idno>
<idno type="doi">10.1111/j.1399-3054.2009.01251.x</idno>
<idno type="wicri:Area/Main/Corpus">003528</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003528</idno>
<idno type="wicri:Area/Main/Curation">003528</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003528</idno>
<idno type="wicri:Area/Main/Exploration">003528</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Populus from high altitude has more efficient protective mechanisms under water stress than from low-altitude habitats: a study in greenhouse for cuttings.</title>
<author>
<name sortKey="Yin, Chunying" sort="Yin, Chunying" uniqKey="Yin C" first="Chunying" last="Yin">Chunying Yin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chengdu Institute of Biology, Chinese Academy of Sciences, PO Box 416, Chengdu 610041, PR China. yincy@cib.ac.cn</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Chengdu Institute of Biology, Chinese Academy of Sciences, PO Box 416, Chengdu 610041</wicri:regionArea>
<wicri:noRegion>Chengdu 610041</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pang, Xueyong" sort="Pang, Xueyong" uniqKey="Pang X" first="Xueyong" last="Pang">Xueyong Pang</name>
</author>
<author>
<name sortKey="Lei, Yanbao" sort="Lei, Yanbao" uniqKey="Lei Y" first="Yanbao" last="Lei">Yanbao Lei</name>
</author>
</analytic>
<series>
<title level="j">Physiologia plantarum</title>
<idno type="eISSN">1399-3054</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Altitude (MeSH)</term>
<term>Amino Acids (metabolism)</term>
<term>Ascorbate Peroxidases (metabolism)</term>
<term>Ascorbic Acid (metabolism)</term>
<term>Biomass (MeSH)</term>
<term>Carbohydrates (analysis)</term>
<term>Carotenoids (metabolism)</term>
<term>China (MeSH)</term>
<term>Chlorophyll (metabolism)</term>
<term>Dehydration (MeSH)</term>
<term>Ecosystem (MeSH)</term>
<term>Electrolytes (metabolism)</term>
<term>Gases (metabolism)</term>
<term>Glutathione Peroxidase (metabolism)</term>
<term>Hydrogen Peroxide (metabolism)</term>
<term>Malondialdehyde (metabolism)</term>
<term>Peroxidase (metabolism)</term>
<term>Plant Leaves (anatomy & histology)</term>
<term>Plant Leaves (enzymology)</term>
<term>Populus (anatomy & histology)</term>
<term>Populus (enzymology)</term>
<term>Populus (growth & development)</term>
<term>Populus (physiology)</term>
<term>Solubility (MeSH)</term>
<term>Species Specificity (MeSH)</term>
<term>Water (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide ascorbique (métabolisme)</term>
<term>Acides aminés (métabolisme)</term>
<term>Altitude (MeSH)</term>
<term>Ascorbate peroxidases (métabolisme)</term>
<term>Biomasse (MeSH)</term>
<term>Caroténoïdes (métabolisme)</term>
<term>Chine (MeSH)</term>
<term>Chlorophylle (métabolisme)</term>
<term>Déshydratation (MeSH)</term>
<term>Eau (métabolisme)</term>
<term>Feuilles de plante (anatomie et histologie)</term>
<term>Feuilles de plante (enzymologie)</term>
<term>Gaz (métabolisme)</term>
<term>Glucides (analyse)</term>
<term>Glutathione peroxidase (métabolisme)</term>
<term>Malonaldéhyde (métabolisme)</term>
<term>Myeloperoxidase (métabolisme)</term>
<term>Peroxyde d'hydrogène (métabolisme)</term>
<term>Populus (anatomie et histologie)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (enzymologie)</term>
<term>Populus (physiologie)</term>
<term>Solubilité (MeSH)</term>
<term>Spécificité d'espèce (MeSH)</term>
<term>Écosystème (MeSH)</term>
<term>Électrolytes (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Carbohydrates</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Amino Acids</term>
<term>Ascorbate Peroxidases</term>
<term>Ascorbic Acid</term>
<term>Carotenoids</term>
<term>Chlorophyll</term>
<term>Electrolytes</term>
<term>Gases</term>
<term>Glutathione Peroxidase</term>
<term>Hydrogen Peroxide</term>
<term>Malondialdehyde</term>
<term>Peroxidase</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>China</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Glucides</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomie et histologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acide ascorbique</term>
<term>Acides aminés</term>
<term>Ascorbate peroxidases</term>
<term>Caroténoïdes</term>
<term>Chlorophylle</term>
<term>Eau</term>
<term>Gaz</term>
<term>Glutathione peroxidase</term>
<term>Malonaldéhyde</term>
<term>Myeloperoxidase</term>
<term>Peroxyde d'hydrogène</term>
<term>Électrolytes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Altitude</term>
<term>Biomass</term>
<term>Dehydration</term>
<term>Ecosystem</term>
<term>Solubility</term>
<term>Species Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Altitude</term>
<term>Biomasse</term>
<term>Chine</term>
<term>Déshydratation</term>
<term>Solubilité</term>
<term>Spécificité d'espèce</term>
<term>Écosystème</term>
</keywords>
<keywords scheme="Wicri" type="geographic" xml:lang="fr">
<term>République populaire de Chine</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cuttings of Populus przewalskii and P. cathayana, which originated from high and low altitudes in southwest China, were used to examine the effect of water stress on the morphological, physiological and biochemical traits of plants in a greenhouse for one growing season. The dry mass accumulation and allocation, gas exchanges, extent of peroxidation damage, osmotic adjustment and antioxidative defenses, and amounts of pigments were measured to characterize the differences in peroxidation damage and protective mechanisms of two poplar species that contrast in drought tolerance. Under water stress, poplars showed a series of biochemical adjustments and morphological changes as follows: a decrease in leaf relative water content, gas exchanges, plant growth and dry mass accumulation; an increase in relative allocation to roots; an increase in the osmolyte contents (e.g. total amino acids). Additionally, water deficit induced an increase in peroxidation damage [as indicated by an increase in electrolyte leakage, malondialdehyde (MDA), carbonyl (C = O ) and hydrogen peroxide (H(2) O(2) ) content], enhanced activities or contents of antioxidants (e.g. ascorbate peroxidase, guaiacol peroxidase, glutathione redutase and ascorbic acid) and reduced amounts of leaf pigments (e.g. chlorophyll and carotenoid). Furthermore, there were significant differences in the extent of morphological and biochemical changes between the two poplar species. Compared with P. cathayana, P. przewalskii responded to water stress by allocating relatively more to root dry mass, possessing a higher net photosynthesis rate, and having more efficient protective mechanisms, such as more osmolyte accumulation, stronger antioxidant activities and lower chlorophyll/carotenoid ratio. Thus, P. przewalskii suffered less damage as deduced from lower levels of electrolyte leakage, MDA, C=O and H(2) O(2) content. Therefore, P. przewalskii originating from high altitude could possess more efficient protective mechanisms than P. cathayana, which is from low-altitude habitats.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19549066</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>10</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1399-3054</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>137</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2009</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Physiologia plantarum</Title>
<ISOAbbreviation>Physiol Plant</ISOAbbreviation>
</Journal>
<ArticleTitle>Populus from high altitude has more efficient protective mechanisms under water stress than from low-altitude habitats: a study in greenhouse for cuttings.</ArticleTitle>
<Pagination>
<MedlinePgn>22-35</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/j.1399-3054.2009.01251.x</ELocationID>
<Abstract>
<AbstractText>Cuttings of Populus przewalskii and P. cathayana, which originated from high and low altitudes in southwest China, were used to examine the effect of water stress on the morphological, physiological and biochemical traits of plants in a greenhouse for one growing season. The dry mass accumulation and allocation, gas exchanges, extent of peroxidation damage, osmotic adjustment and antioxidative defenses, and amounts of pigments were measured to characterize the differences in peroxidation damage and protective mechanisms of two poplar species that contrast in drought tolerance. Under water stress, poplars showed a series of biochemical adjustments and morphological changes as follows: a decrease in leaf relative water content, gas exchanges, plant growth and dry mass accumulation; an increase in relative allocation to roots; an increase in the osmolyte contents (e.g. total amino acids). Additionally, water deficit induced an increase in peroxidation damage [as indicated by an increase in electrolyte leakage, malondialdehyde (MDA), carbonyl (C = O ) and hydrogen peroxide (H(2) O(2) ) content], enhanced activities or contents of antioxidants (e.g. ascorbate peroxidase, guaiacol peroxidase, glutathione redutase and ascorbic acid) and reduced amounts of leaf pigments (e.g. chlorophyll and carotenoid). Furthermore, there were significant differences in the extent of morphological and biochemical changes between the two poplar species. Compared with P. cathayana, P. przewalskii responded to water stress by allocating relatively more to root dry mass, possessing a higher net photosynthesis rate, and having more efficient protective mechanisms, such as more osmolyte accumulation, stronger antioxidant activities and lower chlorophyll/carotenoid ratio. Thus, P. przewalskii suffered less damage as deduced from lower levels of electrolyte leakage, MDA, C=O and H(2) O(2) content. Therefore, P. przewalskii originating from high altitude could possess more efficient protective mechanisms than P. cathayana, which is from low-altitude habitats.</AbstractText>
<CopyrightInformation>Copyright © Physiologia Plantarum 2009.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yin</LastName>
<ForeName>Chunying</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Chengdu Institute of Biology, Chinese Academy of Sciences, PO Box 416, Chengdu 610041, PR China. yincy@cib.ac.cn</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pang</LastName>
<ForeName>Xueyong</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lei</LastName>
<ForeName>Yanbao</ForeName>
<Initials>Y</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>05</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Denmark</Country>
<MedlineTA>Physiol Plant</MedlineTA>
<NlmUniqueID>1256322</NlmUniqueID>
<ISSNLinking>0031-9317</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000596">Amino Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002241">Carbohydrates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004573">Electrolytes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005740">Gases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>1406-65-1</RegistryNumber>
<NameOfSubstance UI="D002734">Chlorophyll</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>36-88-4</RegistryNumber>
<NameOfSubstance UI="D002338">Carotenoids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>4Y8F71G49Q</RegistryNumber>
<NameOfSubstance UI="D008315">Malondialdehyde</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>BBX060AN9V</RegistryNumber>
<NameOfSubstance UI="D006861">Hydrogen Peroxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.-</RegistryNumber>
<NameOfSubstance UI="C121048">guaiacol peroxidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.11</RegistryNumber>
<NameOfSubstance UI="D060387">Ascorbate Peroxidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.7</RegistryNumber>
<NameOfSubstance UI="D009195">Peroxidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.9</RegistryNumber>
<NameOfSubstance UI="D005979">Glutathione Peroxidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>PQ6CK8PD0R</RegistryNumber>
<NameOfSubstance UI="D001205">Ascorbic Acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000531" MajorTopicYN="Y">Altitude</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000596" MajorTopicYN="N">Amino Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060387" MajorTopicYN="N">Ascorbate Peroxidases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001205" MajorTopicYN="N">Ascorbic Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002241" MajorTopicYN="N">Carbohydrates</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002338" MajorTopicYN="N">Carotenoids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002681" MajorTopicYN="N" Type="Geographic">China</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002734" MajorTopicYN="N">Chlorophyll</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003681" MajorTopicYN="N">Dehydration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="Y">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004573" MajorTopicYN="N">Electrolytes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005740" MajorTopicYN="N">Gases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005979" MajorTopicYN="N">Glutathione Peroxidase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006861" MajorTopicYN="N">Hydrogen Peroxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008315" MajorTopicYN="N">Malondialdehyde</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009195" MajorTopicYN="N">Peroxidase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012995" MajorTopicYN="N">Solubility</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>6</Month>
<Day>25</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>6</Month>
<Day>25</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>10</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19549066</ArticleId>
<ArticleId IdType="pii">PPL1251</ArticleId>
<ArticleId IdType="doi">10.1111/j.1399-3054.2009.01251.x</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Lei, Yanbao" sort="Lei, Yanbao" uniqKey="Lei Y" first="Yanbao" last="Lei">Yanbao Lei</name>
<name sortKey="Pang, Xueyong" sort="Pang, Xueyong" uniqKey="Pang X" first="Xueyong" last="Pang">Xueyong Pang</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Yin, Chunying" sort="Yin, Chunying" uniqKey="Yin C" first="Chunying" last="Yin">Chunying Yin</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003519 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003519 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19549066
   |texte=   Populus from high altitude has more efficient protective mechanisms under water stress than from low-altitude habitats: a study in greenhouse for cuttings.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19549066" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020